
September 2004

Using Xilinx Embedded Processor
Subsystems in a Synplify Design Flow

- Andy Norton, CommLogic Design, Inc

Introduction
The availability of embedded processor subsystems in FPGAs opens the door to a
myriad of applications including control plane subsystems, data path assist subsystems,
exception handling processors, diagnostic and test subsystems capable of generating
and analyzing data flows, manufacturing diagnostics and error testing. Today’s FPGAs
integrate existing IP and interfaces with custom processing engines and now,
embedded processor subsystems. These subsystems are instantiated into a top-level
HDL design just as off-the-shelf IP would be integrated.

Experienced design engineers are typically not content to use GUIs without a thorough
understanding of what the GUI is doing under the hood, what files are being created
or manipulated and processed. In fact, many engineers would often prefer to hand-edit
and modify the underlying files directly, the GUI being anathema to their preferred
design methods.

Xilinx Embedded Development Kit (EDK) is used for designing embedded processor
systems and subsystems in FPGAs with embedded IBM PowerPC™ hard processor cores
and/or Xilinx MicroBlaze™ soft processor cores.

This application note discusses a design methodology using Xilinx embedded
processors as subsystems, a ProjNav or ISE flow as the EDK project flow using Synplicity
as the FPGA synthesis tool for the overall design. The flow uses EDK to create the
embedded power subsystem, but once created, the subsystems are instantiated into the
top-level HDL design and synthesized as in any other Synplify project.

While EDK tends to be VHDL centric, for purposes of this application note, Verilog is
assumed to be the HDL of choice.

All files associated with the reference design mentioned in this application note can be
found at http://appnotes.CommLogicDesign.com.

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Page 2 Synplicity, Inc. Application Note

Getting Started
The Xilinx documentation repository is located in the EDK install directory, for
example, XILINX_EDK/doc. Technical reference documents cover: PowerPC processor
block, busses and interfaces, Embedded Systems Tools guide, IP reference guide,
descriptions of software tools and drivers for existing Xilinx IP, user core
templates, etc.

Familiarity with the core architecture is paramount to an understanding of how to craft
an embedded processor subsystem (Power PC or MicroBlaze).

• For the PowerPC core, Data-side 32-bit On Chip Memory (DSOCM) and Instruction-
side 64-bit On Chip Memory (ISOCM) interfaces are low-latency non-cacheable inter-
faces. The Processor Local Bus (PLB) provides a cacheable 32-bit address bus and 64-
bit data bus attached to instruction and data cache units. Inserting a bus bridge, an on-
chip peripheral bus (OPB) is used to connect to slow-peripherals and minimize PLB
bus loading. A Device Control Register (DCR) 32-bit bus can be used for device config-
uration and initialization.

• The MicroBlaze is a 32-bit soft processor core with separate 32-bit Instruction on-chip
peripheral and 32-bit Data on-chip peripheral busses (IOPB and DOPB) and separate
on-chip instruction and data busses with direct connections to on-chip block RAM via
the Local Memory Bus (LMB). In addition Fast Simplex Link Buses (FSL) provide ded-
icated communications channels.

For a designer not familiar with Xilinx Platform Studio (XPS) and the Embedded
Development Kit (EDK), the EDK GUI provides a Base System Builder wizard that allows
you to create a new project based on existing development boards. This lets you kick
start your design and create a pre-built template upon which you can then dig in and
start making the necessary edits and modifications. The Base System Builder allows
you to

• Select target board, processor, and configuration

• Select I/O interfaces and peripherals

• Generate system and design files

Once the system has been generated, it is a simple matter to edit the files directly
instead of using the GUI.

Using Xilinx Embedded Processor Subsystems in a Synplify Design

Synplicity, Inc. Application Note Page 3

XPS (EDK) Project Flow

When an EDK Base System Builder project is created, various files and directories are
created:

Project Options

EDK project options can be set through the Project Options menu pick which modifies
the system.xmp file. Project Options should be set as follows:

• Device and Repository: specify target device

• For Hierarchy and Flow

– Set to SubModule

– Specify top-instance name of embedded subsystem (eg. ppc_subsystem)

– Synthesis Tool: None

– Implementation Tool Flow: ISE

• For HDL and Simulation

– If Verilog is selected, only structural simulation can be used (unisims)

– VHDL can be used for either behavioral or structural simulation

– EDK Library path to be specified for VHDL behavioral simulation only

– The unisims/simprims Xilinx Library Path should be indicated

By setting the project options to SubModule, the indicated top instance name will be used
when instantiating the subsystem in the top-level design. For submodule, the ISE tool
flow must be selected. No synthesis tool is used to synthesize the overall design within
EDK (since the instantiated subsystem will be included later in the Synplify project)
although EDK will have used XST (and possibly Synplify) in the platform creation of
the subsystem peripherals.

System.xmp Project options: location of MHS, MSS, source/header files, architecture, device

System.mhs Microprocessor hardware specification file: component instantiations, connections and
paramterizations

System.mss Microprocessor software specification file

/data Contains the base system builder system.ucf constraints file

/pcores User peripheral cores repository directory

/TestApp A C source test application and linker script

/etc XPS options and IMPACT download files

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Page 4 Synplicity, Inc. Application Note

Building the embedded processor subsystem means crafting the MHS file and can be
accomplished by means of one of the following;

• Base system builder wizard

• GUI selection of peripheral cores

• Direct editing

The makefiles used by EDK can edited by the user and are now composed of two
makefiles: <projname>.make and <projname>_incl.make. More information on these can be
found in the EDK est_guide.

Platform Generation

Once the MHS file has been constructed, Generate Netlist invokes platform generation
(PlatGen) which constructs the netlist, builds and interconnects indicated peripherals,
runs DRC checking, produces error messages, warnings and generates output files.

The EDK Platform generated output will be the embedded subsystem composed of

Platgen will generate two top-level files in /hdl: system_stub.v and system.v. System_stub.v
instantiates system.v and adds IO insertion as Xilinx primitives for all top-level ports.
Unfortunately, this is not usually what we want since we are instantiating an embedded
processor subsystem; clock signals could be generated by top-level instantiated DCMs,
some subsystem signals may go to other modules at the same level of hierarchy instead
of off-chip. Also, using Synplify, the IO insertion is automatic and the user does not
need to explicitly instantiate BUFG, IBUF, OBUF primitives for most IO standards.

Choosing to instantiate system_stub.v as our subsystem would then require editing,
removing or modifying the IO insertion for the ports that do not directly connect to an
external pin. Once modified, rerunning PlatGen would overwrite this file once again.
Another choice might be to rename system_stub.v to subsystem.v after editing the file one
time with the necessary modifications; the downside to this approach is that one must
remember when making port/subsystem modifications, that you have to start from the
modified EDK system_stub.v file again.

 ppc_subsystem Top-level instance of the subsystem

/hdl
system_stub.v
system.v

peripheral_wrappers.v

HDL subsystem with Xilinx IO primitives inserted
HDL embedded processor subsystem without IO primitives
Implementation netlist peripheral files; wrappers are instantiated in system.v

/implementation
peripherals.ngc files
system.bmm
system_stub.bmm

XST generated files
BMM file without the top-level subsystem instance in path
BMM file with top-level subsystem instance in path

/synthesis

Using Xilinx Embedded Processor Subsystems in a Synplify Design

Synplicity, Inc. Application Note Page 5

A better approach is to instantiate system.v directly in the top-level HDL. Synplify will
take care of the necessary IO insertion where required or, for IO standards requiring
IO primitive instantiation (for example LVDS) this should be done directly in the top-
level HDL file. System.v is always correct as generated by EDK PlatGen and never needs
to be modified. The one additional step required is at the top-level, in the case of
tristate signals. For example, take the case of a ppc_subsystem with DDR ddr_dq[31:0]
bidirectional ports. Assuming the ports are defined in the top-level verilog as
 inout [31:0] ddr_dq,

EDK PlatGen will generate system.v bringing out the tristate signals as shown below:
system

ppc_subsystem (
.ppc_sys_clk (ppc_sys_clk_BUFGP),
.ppc_sys_clk90(ppc_sys_clk90_IBUF),
.ppc_core_clk(ppc_core_clk_BUFGP),
.ppc_ddr_clk90(ppc_ddr_clk90_IBUF),
.ddr_clk_lock(ddr_clk_lock_IBUF),
.sys_rst (sys_rst_IBUF),
.uart_rx(uart_rx_IBUF),
.uart_tx(uart_tx_OBUF),
.ddr_casN(ddr_casN_OBUF),
.ddr_cke(ddr_cke_OBUF),
.ddr_csN(ddr_csN_OBUF),
.ddr_rasN (ddr_rasN_OBUF),
.ddr_weN (ddr_weN_OBUF),
.ddr_addr(ddr_addr_OBUF),
.ddr_bankaddr(ddr_bankaddr_OBUF),
.ddr_dm (ddr_dm_OBUF),
.ddr_dq_I(ddr_dq),
.ddr_dq_O(ddr_dq_o),
.ddr_dq_T (ddr_dq_t),
.ddr_dqs_I(ddr_dqs),
.ddr_dqs_O(ddr_dqs_O),
.ddr_dqs_T(ddr_dqs_T),
.led_gpio_I (led_gpio),
.led_gpio_O (led_gpio_O),
.led_gpio_T(led_gpio_T)

);

The EDK generated system_stub.v file, the file we do not want to use, added the IOBUF
insertion as shown here for each bus signal:
IOBUF

iobuf_28 (
.I (ddr_dq_O[0]),
.IO (ddr_dq[0]),
.O (ddr_dq_I[0]),
.T (ddr_dq_T[0])

);

Since we want to be able to instantiate system.v directly into our top-level, we must also
add the required HDL to control the bidirectional signals:
genvar i;
generate

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Page 6 Synplicity, Inc. Application Note

for(i=0; i<=31; i=i+1)
begin: ddrtri

assign ddr_dq[i] = ddr_dq_t[i] ? 1'bZ : ddr_dq_o[i];
end

endgenerate

Now, EDK generated subsystem Verilog files do not need to be modified, simply instan-
tiated. Bidirectional signals are handled correctly and IO insertion is either handled
automatically by Synplify or, explicitly instantiated as Xilinx primitives when required.

Memory Generation

PlatGen will also generate the required memory initialization files for the specified
BRAMs coupled with DSOCM, ISOCM (Power PC only), LMB (MicroBlaze only), OPB
and PLB BRAM controllers.

Two BMM (BlockRAM Memory Map) file will be produced in the /implementation
directory by PlatGen: system.bmm and system_stub.bmm. A BMM file will be used in the
ProjNav ISE flow to indicate the logical data space used by the embedded subsystem
and organization of the BRAM memory. In the case of our subsystem, system_stub.bmm
would be used since it contains the complete hierarchical path (since we specified the
top-level instance of our subsystem in the project options).

During the bitgen phase of the ProjNav ISE flow, a system_stub_bd.bmm file will be created
in the /implementation directory indicating the physical location of the BlockRAMs.

Synplify Hardware Tool Flow

While Xilinx Platform Studio (XPS) uses the Embedded Development Kit (EDK) to
generate the embedded processor subsystem, once created, it is simply added to the
overall Synplify synthesis project. Whether the underlying embedded processor
subsystem used XST or Synplify or both to create the peripherals and generate the
subsystem is irrelevant to the overall Synplify synthesis project.

A typical synthesis project is created by doing the following:

• Defining a project directory hierarchy. For example:

fpga_project
/doc spec and documentation
/src rtl source code files
/constraints .ucf, .sdc files
/sim simulation files
/syn synthesis project files
/pnr place and route files
/ppc_subsystem embedded processor subsystem

• Creating a synthesis project

Using Xilinx Embedded Processor Subsystems in a Synplify Design

Synplicity, Inc. Application Note Page 7

• Adding files to the synthesis project:
project_top.v
/ppc_subsystem/hdl/system.v(EDK generated)

The EDK generated embedded subsystem is added to the Synplify project with this
command:

add_file -verilog "../ppc_subsystem/hdl/system.v"

• Synthesizing the project

System.v contains the actual PPC subsystem with the peripheral wrappers instantiated.
At the end of system.v are black box definitions for each of the wrappers. While Synplify
does not recognize these XST synthesis directives, it does realize it has to create black
boxes and correctly creates them without modification. Synplify will generate the fol-
lowing Warning due to the XST generated synthesis directives:

@W: CS141: Unrecognized synthesis directive attribute Synthesizing
module

Synplify will then generate the following Warnings due to the black box empty mod-
ules:

@W: CG146 : Creating black box for empty module ppc405_0_wrapper

Synplify generates the following output files:

– fpga_project.edf (output file)

– fpga_project.ncf (sdc translated constraints file)

Implementation
Peripherals.ngc

System_stub.bmm

User IP Files

/hdl
System.v

PlatGen

Processor IP
MPD Files

MHS File
system.mhs

Constraints.ucf
Executable.elf

System_stub.bmm

Translate Macro Search Path pointing to /implementation

EDK Subsystem Synplify Synthesis ISE Proj Nav

Synthesis

.edf

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Page 8 Synplicity, Inc. Application Note

ProjNav ISE Flow
While EDK does provide mechanisms to export files for an ISE ProjNav flow, many
designers prefer to build an ISE project separately and add the necessary source files
manually.

The Xilinx fpga_project.npl file is the ISE project file in the fpga_project/pnr directory.

The following files are added to ProjNav following the standard ISE flow:

Project implementation then follows a normal ProjNav flow producing translate, map,
place and route reports. The map report file (.mrp file) will show in the Design
Summary the inclusion of the instantiated resources including the embedded
processors:

Number of PPC405s: 2 out of 2 100%
 Number of JTAGPPCs:1 out of 1 100%

Running BitGen produces the .bit file that is used for configuration. It also creates a
system_stub_bd.bmm file in the /implementation directory; this file can be used by Impact for
combining new software .elf files with the generated system.

fpga_project_top.edf

fpga_project_top.ncf

This is the Synplify generated output file with instantiated
ppc_subsystem.
This file is not added as a source file. This file is the Synplify
generated constraints file translated from the .sdc file

/constraints/constraints.ucf Xilinx constraints file.

/ppc_subsystem/implementation/
system_stub.bmm

This file requires no modification, assuming that the subsystem
instantiated in the top-level module uses the same instance name
as was generated by system_stub.v (that is, the top instance name
indicated in the project options).

ppc_subsystem/ppc405_0/
code/executable.elf

An .elf file (pronounced elf) is a binary data file that contains an
executable CPU code image, ready for running on a CPU. These
files are produced by software compiler/linker tools. Data2BRAM
uses .elf files as its basic data input form.

Using Xilinx Embedded Processor Subsystems in a Synplify Design

Synplicity, Inc. Application Note Page 9

Directory Structure
The embedded processor system is instantiated in the top-level design as a subsystem.
Create an embedded subsystem project directory within your fpga project:

Fpga_project_directory
/ppc_subsystem or /mb_subsystem

Platgen creates the following directories below the PPC project directory, ppc_subsystem:

User defined peripheral cores should be located in /Pcores or in a user-specified project
options/peripheral repository directory:

Simgen creates the follow directories:

Libgen configures software libraries and device drivers, and creates the follow direc-
tories:

/HDL system.[vhd|v] file (if top-level)
system_stub.[vhd|v] file (if sub-module)
peripheral_wrapper.[vhd|v] files

/Implementation Wrapper files for XST created peripherals (.ngc files)
system_stub.bmm (for instantiated BRAMs used in system)
system_stub_bd.bmm (created by ISE - bitgen)

/Synthesis XST synthesis files

/ProjNav created by EDK for projnav or ISE flow

/Pcores
/data
/hdl
/verilog or
/vhdl

/netlist

.pao, .mpd, bbd required files
HDL source files

Precompiled netlist files (.edf or .ngc)

/Simulation
/structural If structural verilog is selected

/Ppc405_0
/Code
/Include
/Lib
/Libsrc

Processor instance directory with instance name
Default location for .elf file
SW library.h files
Compiler files
SW library C files

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Page 10 Synplicity, Inc. Application Note

Top Level Verilog Reference Design
A partial view of a reference design showing the top-level port definitions is shown
here. DCMs are instantiated in the top-level as well as the embedded subsystem
(ppc_subsystem). This is not shown in the following example. For the full design
example, see http://appnotes.ComLogicDesign.com.

module fpga_top
(
// *** DDR SDRAM interface (SSTL_II Class II compat) ***
// All IO uses SSTL_II_DCI

input ddr_clkin,

// output clock
output ddr_clk_out,
output ddr_clkN_out,

// input feedback clock
 input ddr_feedback_clk,

// 32-bit external DDR interface
inout [31:0]ddr_dq,
inout [3:0] ddr_dqs,
output ddr_cke,
output ddr_rasN,
output ddr_casN,
output ddr_weN,
output ddr_csN,
output [3:0] ddr_dm,
output [1:0] ddr_BankAddr,
output [12:0]ddr_addr,

// *** PPC based design (3.3V LVTTL) ***
input ppc_uart_rx,
output ppc_uart_tx,
output [15:0]led_gpio,

// *** misc (3.3V or 2.5V TTL I/O standard) ***
input sys_rstN,
output reg heartbeat
);

// **
// ****** DCMS & CLOCKS ******
// **

//----------------------------- PPC_SYSTEM_CLK--------------------------
.

Using Xilinx Embedded Processor Subsystems in a Synplify Design

Synplicity, Inc. Application Note Page 11

.

.
//----------------------------- PPC_DDR_CLK-----------------------------
.
.
.

// NOTE: this instantiation name must match the top-instance name
// indicated in the project options so that the system_stub.bmm
// file creates the correct hierarchical path
system ppc_subsystem (

// reset
.sys_rst (~sys_rstN),

// clocks
.ppc_sys_clk (ppc_sys_clk),
.ppc_sys_clk90 (ppc_sys_clk90),
.ppc_core_clk (ppc_core_clk),
.ppc_ddr_clk90 (ppc_ddr_clk90),

// use LAST clk to lock which is the DDR clk
.ddr_clk_lock (ppc_ddr_locked),

// UART
.uart_rx (ppc_uart_rx),

 .uart_tx (ppc_uart_tx),

// DDR
.ddr_casN (ddr_casN),
.ddr_cke (ddr_cke),
.ddr_csN (ddr_csN),
.ddr_rasN (ddr_rasN),
.ddr_weN (ddr_weN),
.ddr_addr (ddr_addr[12:0]),
.ddr_bankaddr (ddr_BankAddr[1:0]),
.ddr_dm (ddr_dm[3:0]),
.ddr_dq_I (ddr_dq[31:0]),
.ddr_dq_O (ddr_dq_o[31:0]),
.ddr_dq_T (ddr_dq_t[31:0]),
.ddr_dqs_I (ddr_dqs[3:0]),
.ddr_dqs_O (ddr_dqs_o[3:0]),
.ddr_dqs_T (ddr_dqs_t[3:0]),

// output clks
.DDR_SDRAM_Clk (ddr_clk_out),
.DDR_SDRAM_Clkn (ddr_clkN_out),

// LEDs
.led_gpio_I (led_gpio[15:0]),
.led_gpio_O (led_gpio_o[15:0]),
.led_gpio_T (led_gpio_t[15:0])

);

// Create IOBUF for DDR DQ SDRAM ports

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Page 12 Synplicity, Inc. Application Note

genvar i;

generate

for(i=0; i<=31; i=i+1)

begin: ddrtri

assign ddr_dq[i] = ddr_dq_t[i] ? 1'bZ : ddr_dq_o[i];

end

endgenerate

// Create IOBUF for DDR DQS ports

assign ddr_dqs[0] = ddr_dqs_t[0] ? 1'bZ : ddr_dqs_o[0];

assign ddr_dqs[1] = ddr_dqs_t[1] ? 1'bZ : ddr_dqs_o[1];

assign ddr_dqs[2] = ddr_dqs_t[2] ? 1'bZ : ddr_dqs_o[2];

assign ddr_dqs[3] = ddr_dqs_t[3] ? 1'bZ : ddr_dqs_o[3];

// Create IOBUF for LEDs

generate

for(i=0; i<=15; i=i+1)

begin: ledtri

assign led_gpio[i] = led_gpio_t[i] ? 1'bZ : led_gpio_o[i];

end

endgenerate

endmodule

PPC Subsystem Reference Design

The Microprocessor Hardware Specification (MHS) file lives in the EDK root project
directory and provides the master description of the subsystem. A system might initially
constructed by the Base System Builder Wizard, after which it is easily modified by hand (or
through the GUI). Just as HDL coding provides better code organization, naming and
commenting, many engineers would prefer to manually edit the MHS file.

Standard and Custom peripheral cores are added to the subsystem by instantiation into
this master MHS file, indicating PORTs, DIRection, BUS_INTERFACEs, PARAM-
ETERs, and connectivity. An extensive IP core library is available with EDK.

MHS File

The MHS file defines the configuration of the embedded processor subsystem. This
configuration includes selection of the cores, peripherals, processor, parameters,
address space and connectivity of the subsystem. Different subsystem configurations
can easily be supported by the use of different MHS files.

A partial MHS file is shown below that was initially created by the base system builder
and then edited by hand. Key words are indicated in BLUE and comments in GREEN.

Using Xilinx Embedded Processor Subsystems in a Synplify Design

Synplicity, Inc. Application Note Page 13

Originally the DCMs were created by the wizard, then commented out (bottom of the
MHS file), bringing in the clocks from the top-level design where the DCMs are instan-
tiated. The clocks entering the subsystem are
Bring in clks from DCMs at top-level
PORT ppc_sys_clk = ppc_sys_clk, DIR = IN #for PLB, DSOCM, ISOCM bus

 interfaces
PORT ppc_sys_clk90 = ppc_sys_clk90, DIR = IN#for DDR block
PORT ppc_core_clk = ppc_core_clk, DIR = IN #for PPC CPU core

 3:1(core:busses)
PORT ppc_ddr_clk90 = ppc_ddr_clk90, DIR = IN#for DDR block

Bus interfaces indicate the connectivity for a common group of signals between the
processor and/or peripherals. For example, this subsystem has an ISOCM bus,
DSOCM bus, and both Instruction PLB and Data PLB bus interfaces are connected to a
common PLB bus with a bus arbiter.

BUS_INTERFACE ISOCM = iocm
BUS_INTERFACE DSOCM = docm
BUS_INTERFACE IPLB = plb
BUS_INTERFACE DPLB = plb

Parameters are selected for each pcore/processor overriding the default parameters
for the indicated module. For example, for the PLB DDR controller, some of the
parameters are:

PARAMETER C_INCLUDE_BURST_CACHELN_SUPPORT = 1
PARAMETER C_DQS_PULLUPS = 1
PARAMETER C_REG_DIMM = 1
PARAMETER C_DDR_TMRD = 20000
PARAMETER C_DDR_TWR = 20000
PARAMETER C_DDR_TRAS = 60000
PARAMETER C_DDR_TRC = 90000
PARAMETER C_DDR_TRFC = 100000
PARAMETER C_DDR_TRCD = 30000
PARAMETER C_DDR_TRRD = 20000
PARAMETER C_DDR_TRP = 30000
PARAMETER C_DDR_TREFC = 70300000
PARAMETER C_DDR_AWIDTH = 13
PARAMETER C_DDR_COL_AWIDTH = 10

Parameters such as the timing parameters can be entered directly from the DDR
manufacturers data sheet. Allowable parameters can be determined by viewing the
MPD file for the parameterizable pcore. Go to the website appnotes.CommLogicDesign.com
to download examples.
##

MPD File

The Microprocessor Peripheral Definition (MPD) file defines the interface of the
peripheral. An MPD file has the following characteristics:

• Lists ports and default connectivity for bus interfaces

• Lists parameters and default values

• Any MPD parameter is overwritten by the equivalent MHS assignment

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Page 14 Synplicity, Inc. Application Note

MPD files are required for all peripherals. The Xilinx IPLib repository is located in the
Xilinx EDK install directory: XILINX_EDK\hw\XilinxProcessorIPLib\pcores. The MPD file for a
peripheral is located in the /data subdirectory of the peripheral. Various OPTIONS,
BUS_INTERFACEs, PARAMETERs, PORTs and PORT DIRections are specified.

When instantiating a peripheral, only PORTs and PARAMETERs specified in the
peripherals MPD file are acceptable and will be cross-checked during DRC checking.

PAO File

A Peripheral Analyzer Order file is required for EDK XST synthesis specifying the list
of HDL files and the analyze order. Many sample PAO files can be found in the Xilinx-
ProcessorIPLib/pcore repository. The files are listed with the top-level modules last, and the
sub-modules preceding them (bottom-to-top order of dependency).

PlatGen system file output

PlatGen (Platform Generation Tool) is invoked to create a netlist based on this master
configuration file. PlatGen will check syntax, run DRC checking at various levels, read
MPD definitions for each of the selected peripherals, create a system address map,
check drivers and various properties, create hardware output directories, top-level
HDL files and wrappers and if indicated in the peripherals MPD file
(IMP_NETLIST=TRUE indicates that a NGC file is to be produced), synthesize the
peripheral using XST synthesis.

As previously described, system.v will be EDK generated and instantiated in the project
top-level HDL file. A partial view of system.v for the example MHS file is shown below.
Only the PowerPC and the PLB DDR controller are shown for brevity. Note the XST
black box synthesis directives produced. As previously described, Synplify will generate
warnings for the unrecognized directives but create the required black boxes.
//--
// system.v
//--

module system
 (
 ppc_sys_clk,
 ppc_sys_clk90,
 ppc_core_clk,
 ppc_ddr_clk90,
 ddr_clk_lock,
 sys_rst,
 uart_rx,
 uart_tx,
 ddr_casN,
 ddr_cke,
 ddr_csN,
 ddr_rasN,
 ddr_weN,
 ddr_addr,
 ddr_bankaddr,

Using Xilinx Embedded Processor Subsystems in a Synplify Design

Synplicity, Inc. Application Note Page 15

 ddr_dm,
 ddr_dq_I,
 ddr_dq_O,
 ddr_dq_T,
 ddr_dqs_I,
 ddr_dqs_O,
 ddr_dqs_T,
 led_gpio_I,
 led_gpio_O,
 led_gpio_T
);
 input ppc_sys_clk;
 input ppc_sys_clk90;
 input ppc_core_clk;
 input ppc_ddr_clk90;
 input ddr_clk_lock;
 input sys_rst;
 input uart_rx;
 output uart_tx;
 output ddr_casN;
 output ddr_cke;
 output ddr_csN;
 output ddr_rasN;
 output ddr_weN;
 output [0:12] ddr_addr;
 output [0:1] ddr_bankaddr;
 output [0:3] ddr_dm;
 input [0:31] ddr_dq_I;
 output [0:31] ddr_dq_O;
 output [0:31] ddr_dq_T;
 input [0:3] ddr_dqs_I;
 output [0:3] ddr_dqs_O;
 output [0:3] ddr_dqs_T;
 input [0:15] led_gpio_I;
 output [0:15] led_gpio_O;
 output [0:15] led_gpio_T;
.....
ppc405_0_wrapper
 ppc405_0 (
 .C405CPMCORESLEEPREQ (),
 .C405CPMMSRCE (),
 .C405CPMMSREE (),
 .C405CPMTIMERIRQ (),
 .C405CPMTIMERRESETREQ (),
 .C405XXXMACHINECHECK (),
 .CPMC405CLOCK (ppc_core_clk),

 // synthesis attribute box_type of ppc405_0 is black_box;

 ddr_sdram_32mx32_wrapper
 ddr_sdram_32mx32 (
 .PLB_ABus (plb_PLB_ABus),

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Page 16 Synplicity, Inc. Application Note

 .DDR_Clk (DDR_SDRAM_Clk),
 .DDR_Clkn (DDR_SDRAM_Clkn),
 .DDR_CKE (DDR_SDRAM_32Mx32_DDR_CKE),
 .DDR_CSn (DDR_SDRAM_32Mx32_DDR_CSn),
 .DDR_RASn (DDR_SDRAM_32Mx32_DDR_RASn),
 .DDR_CASn (DDR_SDRAM_32Mx32_DDR_CASn),
 .DDR_WEn (DDR_SDRAM_32Mx32_DDR_WEn),
 .DDR_DM (DDR_SDRAM_32Mx32_DDR_DM),
 .DDR_BankAddr (DDR_SDRAM_32Mx32_DDR_BankAddr),
 .DDR_Addr (DDR_SDRAM_32Mx32_DDR_Addr),
 .DDR_Init_done (),
 .PLB_Clk (ppc_sys_clk),
 .Clk90_in (ppc_sys_clk90),
 .DDR_Clk90_in (ppc_ddr_clk90),
 .PLB_Rst (plb_PLB_Rst),
 .DDR_DQ_I (DDR_SDRAM_32Mx32_DDR_DQ_I),
 .DDR_DQ_O (DDR_SDRAM_32Mx32_DDR_DQ_O),
 .DDR_DQ_T (DDR_SDRAM_32Mx32_DDR_DQ_T),
 .DDR_DQS_I (DDR_SDRAM_32Mx32_DDR_DQS_I),
 .DDR_DQS_O (DDR_SDRAM_32Mx32_DDR_DQS_O),
 .DDR_DQS_T (DDR_SDRAM_32Mx32_DDR_DQS_T)
);
 // synthesis attribute box_type of DDR_SDRAM_32Mx32 is black_box;

Synplify Synthesis Report

The Synplify project for this reference design consisted of the following source files:
 #add_file options
 add_file -verilog "$LIB/xilinx/virtex2p.v"
 add_file -verilog "../ppc_subsystem/hdl/system.v"
 add_file -verilog "../src/test_top.v"

The Synplify warnings encountered were for the following:

• Unrecognized synthesis directives for the XST instantiated Black boxes

• Creating the black boxes for the empty modules

The following excerpt shows examples:

$ Start of Compile
#Mon Aug 02 18:00:11 2004

Synplicity Verilog Compiler, version Compilers 2.6.0, Build 102R, built
Jan 27 2004
Copyright (C) 1994-2004, Synplicity Inc. All Rights Reserved

@I::"C:\Program Files\synplicity\Synplify_751\lib\xilinx\virtex2p.v"
@I::"C:\DATA\edktest\ppc_subsystem\hdl\system.v"
@W: CS141 :"C:\DATA\edktest\ppc_subsystem\hdl\system.v":444:15:444:23|
Unrecognized synthesis directive attribute
....
@I::"C:\DATA\edktest\src\test_top.v" Verilog syntax check successful!
File C:\DATA\edktest\src\test_top.v changed - recompiling

Using Xilinx Embedded Processor Subsystems in a Synplify Design

Synplicity, Inc. Application Note Page 17

Selecting top level module fpga_top
Synthesizing module IBUFG
Synthesizing module DCM
Synthesizing module BUFG
Synthesizing module ppc405_0_wrapper
@W: CG146 :"C:\DATA\edktest\ppc_subsystem\hdl\system.v":1041:7:1041:22|
Creating black box for empty module ppc405_0_wrapper
Synthesizing module jtagppc_0_wrapper
@W: CG146 :"C:\DATA\edktest\ppc_subsystem\hdl\system.v":1332:7:1332:23|
Creating black box for empty module jtagppc_0_wrapper
.....
Synthesizing module system
Synthesizing module fpga_top
@END

ProjNav ISE Reports

The ProjNav ISE source files were
• test_top.edf

• ..\ppc_subsystem\testapp\executable.elf

• ..\constraints\test_top.ucf

• ..\ppc_subsystem\implementation\system_stub.bmm

ISE Translate Properties must set the Macro Search Path to point to the ppc_subsystem/imple-
mentation directory, in order for it to find the .ngc peripherals that were black-boxed by
Synplify referenced in test_top.edf. These peripherals were created by XST during
PlatGen.

Looking at a partial view of test_top.mrp (mapping report) design summary below, one
can see the PowerPC and JTAGPPC were successfully created:
 Number of PPC405s: 1 out of 2 50%
 Number of JTAGPPCs: 1 out of 1 100%
 Number of Tbufs: 16 out of 9,696 1%
 Number of Block RAMs: 16 out of 192 8%
 Number of GCLKs: 5 out of 16 31%
 Number of DCMs: 2 out of 8 25%

Xilinx IP Peripherals

Xilinx provides a wide variety of IP cores including

• Bus infrastructure cores

• Memory interface cores

• Peripherals

• User core templates

• Other IP

These cores are provided mostly as VHDL source and located in the EDK install
directory at: XILINX_EDK\hw\XilinxProcessorIPLib\pcores. Many cores are free, some come
with evaluation licenses. The cores are described in EDK\doc\proc_ip_ref_guide.pdf.

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Page 18 Synplicity, Inc. Application Note

Adding IP Peripheral Cores

Xilinx provides a Create Peripheral Wizard which generates core description files and
ensures that a custom peripheral complies with the Xilinx implementation of the IBM
CoreConnect PLB and OPB bus standard. The PLB and OPB busses will connect to an
IPIF allowing user logic to connect to the IPIC side of the interface.

User core templates (VHDL only) provide a starting point for attaching IP to the OPB
and PLB busses. Each user core contains an IP Interface (IPIF). These cores are
located in the EDK install directory at XILINX_EDK\hw\XilinxReferenceDesigns\pcores.
Reference designs exist for PLB and OPB busses and different Slave Services Packages
(ssp) are provided. A user_core_templates_ref_guide is located in the XILINX_EDK\doc
directory.

DCR and OCM bus IP cores are not currently supported through a template or wizard.
The files for these pcores are created in a similar manner however and the bus
protocols are simple to understand.

There are two ways to integrate custom IP cores:

• As a black box, synthesized with Synplify

• As an XST netlist

The Synplify generated IP core would then require an associated MPD and BBD (Black
Box Definition) file. The Synplify output file user_logic.edf is placed in the /netlist
directory. The BBD file would indicate that user_logic.edf is a black box file. An XST
netlist is synthesized by PlatGen along with the system and requires an MPD and PAO
file.

Pcore Directory Structure

Platgen searches for IP according to the following priority:

• /pcores directory in the project directory

• <library_path>/<Library Name>/pcores if -lp option set (project options/peripheral reposi-
tory)

• EDK/hw/XilinxProcessorIPLib/pcores

The Pcore HDL source files must be located in the /verilog or /vhdl directory. Required
MPD, PAO and BBD files for the peripheral must be placed in the /data directory.

Using Xilinx Embedded Processor Subsystems in a Synplify Design

Synplicity, Inc. Application Note Page 19

Pcore MPD File

The .mpd file specifies PORTs, PARAMETERs, BUS_INTERFACEs and OPTIONs. For
verilog, the HDL option specified is

 OPTION HDL = VERILOG

If XST is used as the synthesis tool for creation of the peripheral, the netlist option is

 OPTION IMP_NETLIST = TRUE

If Synplify is used for the creation of the peripheral, the netlist option is

 OPTION IMP_NETLIST = FALSE

This would indicate to PlatGen to NOT run XST synthesis for this peripheral. A
peripheral wrapper is still created and instantiated in system.v and the project synthesis
run in Synplify would again create a black box for this peripheral. However, in ProjNav,
the Translate Search Path must be modified to additionally point to the Synplify
created peripheral.edf.

During the creation of an OPB or PLB IPIF (IP interface), the EDK Create Peripheral
wizard generates a VHDL IPIF and a user logic block. The user logic might be written
in Verilog, synthesized with the Synplify tool, and instantiated as a black box netlist with
the .edf generated by the Synplify tool, placed in the /netlist directory, and marked as a
black box in the BBD file. You can specify VHDL XST synthesis, although the actual
user logic was created using the Synplify synthesis tool.

A separate application note and reference design will be available in the future
showing the details of a Synplify synthesized custom peripheral core.

Ppc_subsystem (EDK Project Directory)

pcores

Xilinx IP-Cores IP-Core-Name

data netlist

vhdl

.v or .vhd source

.mpd

.pao

.bbd

MyIP Peripheral Repositorypcores

hdl

verilog

.edf or .ngc

Page 20 Synplicity, Inc. Application Note

Synplicity, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: (U.S.) +1 408 215-6000, Fax: (U.S.) +1 408 990-0290
www.synplicity.com
Copyright © 2002 Synplicity, Inc. All rights reserved. Specifications subject to change without notice.
Synplicity, the Synplicity logo, “Simply Better Results”, Synplify Pro, and SCOPE are registered trade-
marks of Synplicity, Inc. All other names mentioned herein are trademarks or registered trademarks of
their respective companies.

Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow

Conclusion
Xilinx embedded processor subsystems created using EDK can easily be integrated into
a Synplicity synthesis flow by instantiating the EDK generated embedded subsystem
into the top-level HDL design. Synplicity tools can be used not only for the overall
project synthesis tool but also as the peripheral core synthesis tool in the creation of
custom peripherals.

About the Author
This application note is based on material authored by Andrew Norton, who is a
founding partner of Comm Logic Design Inc, which provides design and consulting
services, especially for communications and data storage applications. Comm Logic
Design is a Xilinx certified partner specializing in FPGA and embedded processor
subsystems focused on architecting, building, and delivering system solutions. He can
be contacted at andy@commLogicDesign.com (www.CommLogicDesign.com).

	Using Xilinx Embedded Processor Subsystems in a Synplify Design Flow
	Introduction
	Getting Started
	XPS (EDK) Project Flow
	Synplify Hardware Tool Flow
	ProjNav ISE Flow
	Directory Structure
	Top Level Verilog Reference Design
	PPC Subsystem Reference Design
	Conclusion
	About the Author

